Automata and Formal Languages
 Lecture 09

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Pumping lemma

PUMPING LEMMA

Agenda

>Pumping lemma1
> Example 1
>Pumping lemma2
>Example 2
> Example 3

Non-regular languages

(PUMPING LEMMA)

$$
\mathrm{L}=\left\{a^{n} b^{n}: \mathrm{n} \geq 0\right\}
$$

Non-regular languages $\mathrm{L}=\left\{v v^{R}: \mathrm{v} \in\{a, b\}^{*}\right\}$

Regular languages
$a * b$
$b^{*} c+a$
$b+c(a+b)^{*}$
etc...

How can we prove that a language L is not regular?

Prove that there is no DFA or NFA or RE that accepts L

Difficulty: this is not easy to prove

(since there is an infinite number of them)

Solution: use the Pumping Lemma !!!

Take an infinite regular language L
(contains an infinite number of strings)

There exists a DFA that accepts L

m
states

Take string $w \in L$ with $|w| \geq m$

then, at least one state is repeated in the walk of w

Walk in DFA of $w=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$

Repeated state in DFA

There could be many states repeated

Take q to be the first state repeated

One dimensional projection of walk w :

We can write $w=x y z$

One dimensional projection of walk w :

Firs \dagger
occurrence Second occurrence

In DFA: $\quad w=x y z$

Observation: \quad length $|x y| \leq m$ number of states of DFA

Unique States

Since, in $x y$ no

 state is repeated
Observation: \quad length $|y| \geq 1$

Since there is at least one transition in loop

Additional string: The string $x z$ is accepted

Do not follow loop

Additional string:

The string $x y y z$ is accepted

Follow loop 2 times

Additional string: The string x y y $y z$ is accepted

Follow loop 3 times

In General:

The string $x y^{i} z$ is accepted $i=0,1,2, \ldots$

$x y^{i} z \in L \quad i=0,1,2, \ldots$

 Language accepted by the DFA

Pumping lemma(weak)

Let L be an infinite regular language over A. then there exist strings
$x, y, z \in A^{*}$, where $y \neq \varepsilon$,
such that
$x y^{i} z \in L$ for all $i \geq 0$. such that

Example 1

$$
\mathrm{L}=\left\{a^{n} b^{n}: \mathrm{n} \geq 0\right\}
$$

Let L be is regular and suppose L can be accepted by DFA (M). Then there exist x, y, $z \in A^{*}$, let $\mathrm{i}=1$
By pumping lemma $w=x y z=a^{m} b^{m}$

1. y consists of a's. $|\mathrm{xy}|=\mathrm{k}, \mathrm{y}=a^{r} . \mathrm{xy}=a^{k}$
$x y^{2} \mathrm{z}=a^{m-r} \cdot a^{2 r} \cdot a^{m-k} b^{m}=a^{m+r} b^{m}$ is not in L

Example 1

2. y consists of b's.
$\mathrm{x} y^{2} \mathrm{z}=a^{m} . b^{2 r} . b^{m-k} b^{m}=a^{m} b^{m+r}$ not in L
3. y consists of one or more a's followed by one or more b's.
$\mathrm{y}=\mathrm{ab}, \mathrm{x}=a^{m-1}, \mathrm{z}=b^{m-1}$
$\mathrm{xyz}=a^{m-1} a b b^{m-1}$
$\mathrm{x} y^{2} \mathrm{z}=a^{m-1} \mathrm{abab} b^{m-1}=a^{m}$ ba b^{m} not in L

Pumping lemma (strong)

Let L be an infinite regular language over A. and suppose L can be accepted by DFA (M) with m states. Then for any string $\mathrm{w} \in \mathrm{L}$ such that $|\mathrm{w}| \geq \mathrm{m}$ there exist $\mathrm{x}, \mathrm{y}, \mathrm{z} \in A^{*}$ such that

1. $w=x y z, y \neq \varepsilon$
2. $|x y| \leq m$,
3. $|y| \geq 1$,
4. $w_{i}=x y^{i} z \in L$ for all $i \geq 0$

Example 1

$$
\mathrm{L}=\left\{a^{n} b^{n}: \mathrm{n} \geq 0\right\}
$$

Let L be is regular and suppose L can be accepted by DFA (M) with m states. Then for any string $w \in L$ such that $|w| \geq m$ there exist $x, y, z \in A^{*}$ such that
$\mathrm{w}=a^{m} b^{m} \quad|\mathrm{w}|=2 \mathrm{~m}>\mathrm{m}$
By pumping lemma $w=x y z=a^{m} b^{m}$

Example 1

$\mathrm{w}=a^{m} b^{m} \quad|\mathrm{w}|=2 \mathrm{~m}>\mathrm{m}$
By pumping lemma $w=x y z=a^{m} b^{m}$
$\mathrm{y}=a^{r}, \mathrm{r}>0, \quad|\mathrm{y}|>0$

$$
|\mathrm{xy}|=\mathrm{k} \leq m
$$

$\mathrm{x}=a^{k-r}, \mathrm{y}=a^{r}, \mathrm{z}=a^{m-k} b^{m}$
$x y^{2} \mathrm{z}=a^{k-r} \cdot a^{2 r} \cdot a^{m-k} b^{m}=a^{m+r} b^{m}$
not in L , Then L is not regular language

Example 2

$\mathrm{L}=\left\{a^{n}: \mathrm{n}\right.$ is prime $\}$ is not regular language
Let L be is regular and suppose L can be accepted by DFA (M) with m states. Then for any string $w \in L$ such that $|w| \geq m$ there exist $\mathrm{x}, \mathrm{y}, \mathrm{z} \in A^{*}$ such that
$\mathrm{w}=a^{\mathrm{m}},|\mathrm{w}|=\mathrm{m} \geq \mathrm{m}$
By pumping lemma $\quad \mathrm{w}=x y z=a^{m}$

Example 2

$\mathrm{w}=a^{m},|\mathrm{w}|=\mathrm{m}=\mathrm{m}$
By pumping lemma $w=x y z=a^{m}, \mathrm{~m}$ is prime
$\mathrm{y}=a^{r}, \mathrm{r}>0, \quad|\mathrm{y}|>0$

$$
|\mathrm{xy}|=\mathrm{k} \leq m
$$

$\mathrm{x}=a^{k-r}, \mathrm{y}=a^{r}, \mathrm{z}=a^{m-k}$
$w_{2}=x y^{2} \mathrm{z}=a^{k-r} \cdot a^{2 r} \cdot a^{m-k}=a^{m-k}$
$w_{m+1}=\mathrm{x} y^{m+1} \mathrm{z}=a^{k-r} a^{(m+1) r} \cdot a^{m-k}$

Example 2

$w_{m+1}=\mathrm{x} y^{m+1} \mathrm{z}=a^{k-r} a^{(m+1) r} \cdot a^{m-k}$
$=a^{m r+m}=a^{m(r+1)}$
$r>0$ then $(r+1)>1$ and m is prime then $m>1$
not in L, because $m(r+1)$ not prime
Then L is not regular language

