Automata and Formal Languages

Lecture 09

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

		You are in: Home/Courses/Automata	e/Courses/Automata and Formal Languages Back To Courses	
	Benha University	Ass. Lect. Ahmed Hassan /	Ahmed Abu El Atta :: Course Details:	Coo
	Home	Automata And Formal Lan	iguages	8
	التسغة العربية		add course edit cou	
9	My C.V.	Course name	Automata and Formal Languages	
	About		Undergraduate	- ii
	Courses	Level		- 4
	Publications	Last year taught	2018	
	Inlinks(Competition)	Course description	Not Uploaded	
	Theses	Course description		?
	Reports	Course password		- Ym
	Published books			
	Workshops / Conferences		and dian	
	Supervised PhD	Course files	add mes	1
	Supervised MSc	Course URLs	add URLs	G
	Supervised Projects	Course assignments	add assignments	- 6
	Education		Market Answerigt (1110) - 1 The	
	Language skills	Course Exams &Model Answers	add exams	
				(odi

Pumping lemma

PUMPING LEMMA

Agenda

Pumping lemma1

≻Example 1

Pumping lemma2

≻Example 2

≻Example 3

Non-regular languages

(PUMPING LEMMA)

How can we prove that a language L is not regular?

Prove that there is no DFA or NFA or RE that accepts L

Difficulty: this is not easy to prove (since there is an infinite number of them)

Solution: use the Pumping Lemma !!!

Take an infinite regular language L(contains an infinite number of strings)

There exists a DFA that accepts L

Take string $w \in L$ with $|w| \geq m$ (number of states of DFA)

then, at least one state is repeated in the walk of $_{\cal W}$

There could be many states repeated

Take q to be the first state repeated

One dimensional projection of walk w:

We can write w = xyz

One dimensional projection of walk *W*: First Second occurrence occurrence

Observation: length $|y| \ge 1$

Since there is at least one transition in loop

Pumping lemma(weak)

Let L be an infinite regular language over A. then there exist strings

x, y,
$$z \in A^*$$
, where $y \neq \varepsilon$,

such that

$$xy^i z \in L$$
 for all $i \ge 0$. such that

Example 1

$L=\{a^nb^n\colon n\ge 0\}$

Let L be is regular and suppose L can be accepted by DFA (M). Then there exist x , y, $z \in A^*$, let i=1

By pumping lemma $w = xyz = a^m b^m$

1. y consists of a's. $|xy|=k, y=a^r. xy=a^k$ $xy^2z = a^{m-r}.a^{2r}.a^{m-k}b^m=a^{m+r}b^m$ is not in L

Example 1

2. y consists of b's.

 $xy^{2}z = a^{m} .b^{2r} .b^{m-k}b^{m} = a^{m}b^{m+r}$ not in L

3. y consists of one or more a's followed by one or more b's.

y=ab, x=
$$a^{m-1}$$
, z= b^{m-1}
xyz = a^{m-1} ab b^{m-1}
xy²z = a^{m-1} abab b^{m-1} = a^m ba b^m not in L

Pumping lemma (strong)

Let L be an infinite regular language over A. and suppose L can be accepted by DFA (M) with m states. Then for any string $w \in L$ such that $|w| \ge m$ there exist x , y, $z \in A^*$ such that

2.
$$|xy| \le m$$
,

3.
$$|y| \ge 1$$
,

4. $w_i = xy^i z \in L$ for all $i \ge 0$

Example 1

$\mathsf{L}=\{a^nb^n\colon\mathsf{n}\ge\mathsf{0}\}$

Let L be is regular and suppose L can be accepted by DFA (M) with m states. Then for any string $w \in L$ such that $|w| \ge m$ there exist x , y, $z \in A^*$ such that

 $w=a^mb^m$ |w|=2m>m

By pumping lemma $w = xyz = a^m b^m$

Example 1 $w = a^m b^m$ |w| = 2m > mBy pumping lemma $w = xyz = a^m b^m$ $y=a^{r}$, r >0, |y|>0 $|xy| = k \le m$ $x = a^{\kappa-r}$, $y = a^r$, $z = a^{m-\kappa}b^m$ $xy^{2}z = a^{k-r} . a^{2r} . a^{m-k}b^{m} = a^{m+r}b^{m}$ not in L, Then L is not regular language

Example 2

L={ a^n : n is prime} is not regular language

Let L be is regular and suppose L can be accepted by DFA (M) with m states. Then for any string $w \in L$ such that $|w| \ge m$ there exist x , y, $z \in A^*$ such that

 $w=a^m$, $|w|=m\geq m$

By pumping lemma $w=xyz = a^m$

 $w=a^m$, |w| = m=m

By pumping lemma $w = xyz = a^m$, m is prime

$$y=a^{r}, r >0, |y|>0$$

$$|xy| = k \le m$$

$$x=a^{k-r}, y=a^{r}, z=a^{m-k}$$

$$w_{2}=xy^{2}z = a^{k-r} .a^{2r} .a^{m-k}=a^{m-k}$$

$$w_{m+1}=xy^{m+1}z = a^{k-r}a^{(m+1)r} .a^{m-k}$$

$$w_{m+1} = xy^{m+1}z = a^{k-r}a^{(m+1)r} a^{m-k}$$

= $a^{mr+m} = a^{m(r+1)}$

r>0 then (r+1)>1 and m is prime then m>1

not in L, because m(r+1) not prime

Then L is not regular language

